Install and load the readxl & tidyverse packages

#install.packages("readxl")
#install.packages("tidyverse")
library(readxl)
library(tidyverse)
## -- Attaching packages -------------------------------------------- tidyverse 1.2.1 --
## <U+221A> ggplot2 3.1.0     <U+221A> purrr   0.2.5
## <U+221A> tibble  1.4.2     <U+221A> dplyr   0.7.7
## <U+221A> tidyr   0.8.2     <U+221A> stringr 1.3.1
## <U+221A> readr   1.1.1     <U+221A> forcats 0.3.0
## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Prepare Data

tmp<-tempfile(fileext=".xlsx")
download.file("https://github.com/MEF-BDA503/pj18-ozenm/blob/master/odd_otomobil_satislar_201607.xlsx?raw=true",mode = 'wb',destfile=tmp)
odd_201607<-readxl::read_excel(tmp,skip=7,col_names=FALSE)
file.remove(tmp)
## [1] TRUE
View(odd_201607)
head(odd_201607)
## # A tibble: 6 x 10
##   X__1          X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10
##   <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ALFA ROMEO      NA    33    33    NA    NA     0     0    33    33
## 2 ASTON MARTIN    NA     2     2    NA    NA     0     0     2     2
## 3 AUDI            NA   905   905    NA    NA     0     0   905   905
## 4 BENTLEY         NA     1     1    NA    NA     0     0     1     1
## 5 BMW             NA  1856  1856    NA    NA     0     0  1856  1856
## 6 CHERY           NA    22    22    NA    NA     0     0    22    22
tail(odd_201607)
## # A tibble: 6 x 10
##   X__1        X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10
##   <chr>      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TATA          NA    NA     0    NA    NA     0     0     0     0
## 2 TOYOTA      2141   754  2895    NA   310   310  2141  1064  3205
## 3 VOLKSWAGEN    NA  7239  7239    NA  1845  1845     0  9084  9084
## 4 VOLVO         NA   130   130    NA    NA     0     0   130   130
## 5 <NA>          NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6 TOPLAM:     9411 36155 45566  6969  5998 12967 16380 42153 58533
odd_201607 <- odd_201607 %>% slice(-c(49,50))

#colnames(odd_201607) <- c("brand_name","domstc_auto_cnt","imprt_auto_cnt","total_auto_cnt","domstc_comm_vehcl_cnt","imprt_comm_vehcl_cnt","total_comm_vehcl_cnt","domstc_total_cnt","imprt_total_cnt","total_cnt")


colnames(odd_201607) <- c("brand_name","auto_dom","auto_imp","auto_total","comm_dom","comm_imp","comm_total","total_dom","total_imp","total_total")

car_data_jul_16  <- odd_201607 %>% mutate_if(is.numeric,funs(ifelse(is.na(.),0,.))) %>% mutate(year=2016,month=7)

print(car_data_jul_16,width=Inf)
## # A tibble: 48 x 12
##    brand_name   auto_dom auto_imp auto_total comm_dom comm_imp comm_total
##    <chr>           <dbl>    <dbl>      <dbl>    <dbl>    <dbl>      <dbl>
##  1 ALFA ROMEO          0       33         33        0        0          0
##  2 ASTON MARTIN        0        2          2        0        0          0
##  3 AUDI                0      905        905        0        0          0
##  4 BENTLEY             0        1          1        0        0          0
##  5 BMW                 0     1856       1856        0        0          0
##  6 CHERY               0       22         22        0        0          0
##  7 CITROEN             0     1221       1221      100      477        577
##  8 DACIA               0     2680       2680        0      320        320
##  9 DS                  0       19         19        0        0          0
## 10 FERRARI             0        0          0        0        0          0
##    total_dom total_imp total_total  year month
##        <dbl>     <dbl>       <dbl> <dbl> <dbl>
##  1         0        33          33  2016     7
##  2         0         2           2  2016     7
##  3         0       905         905  2016     7
##  4         0         1           1  2016     7
##  5         0      1856        1856  2016     7
##  6         0        22          22  2016     7
##  7       100      1698        1798  2016     7
##  8         0      3000        3000  2016     7
##  9         0        19          19  2016     7
## 10         0         0           0  2016     7
## # ... with 38 more rows
saveRDS(car_data_jul_16,file="odd_car_sales_data_jul_16.rds")
car_data_jul_16 %>% 
  select(brand_name,auto_dom) %>% 
  arrange(desc(auto_dom)) %>% 
  filter(auto_dom>0)
## # A tibble: 6 x 2
##   brand_name auto_dom
##   <chr>         <dbl>
## 1 FIAT           2678
## 2 TOYOTA         2141
## 3 RENAULT        2006
## 4 HYUNDAI        1968
## 5 HONDA           376
## 6 FORD            242
car_data_jul_16 %>% 
  filter(auto_total > 0 | comm_total > 0) %>%
  select(brand_name,auto_total,comm_total,total_total) %>%
  arrange(desc(total_total))
## # A tibble: 41 x 4
##    brand_name    auto_total comm_total total_total
##    <chr>              <dbl>      <dbl>       <dbl>
##  1 VOLKSWAGEN          7239       1845        9084
##  2 FORD                2267       4103        6370
##  3 RENAULT             5513        761        6274
##  4 FIAT                2849       3080        5929
##  5 OPEL                3495          0        3495
##  6 HYUNDAI             3254        153        3407
##  7 TOYOTA              2895        310        3205
##  8 DACIA               2680        320        3000
##  9 PEUGEOT             1497        619        2116
## 10 MERCEDES-BENZ       1651        253        1904
## # ... with 31 more rows