library(tidyverse)
## -- Attaching packages -------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.0.0 v purrr 0.2.5
## v tibble 1.4.2 v dplyr 0.7.6
## v tidyr 0.8.1 v stringr 1.3.1
## v readr 1.1.1 v forcats 0.3.0
## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggplot2)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
We get the data from github repository.
tmp<-tempfile(fileext=".rds")
download.file("https://github.com/MEF-BDA503/mef-bda503.github.io/blob/master/files/car_data_aggregate.rds?raw=true",destfile=tmp,mode = 'wb')
raw_data<-read_rds(tmp)
file.remove(tmp)
## [1] TRUE
head(raw_data)
## # A tibble: 6 x 12
## brand_name auto_dom auto_imp auto_total comm_dom comm_imp comm_total
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ALFA ROMEO 0 13 13 0 0 0
## 2 ASTON MAR~ 0 2 2 0 0 0
## 3 AUDI 0 350 350 0 0 0
## 4 BENTLEY 0 0 0 0 0 0
## 5 BMW 0 158 158 0 0 0
## 6 CITROEN 0 134 134 0 197 197
## # ... with 5 more variables: total_dom <dbl>, total_imp <dbl>,
## # total_total <dbl>, year <dbl>, month <dbl>
tail(raw_data)
## # A tibble: 6 x 12
## brand_name auto_dom auto_imp auto_total comm_dom comm_imp comm_total
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 SSANGYONG 0 19 19 0 3 3
## 2 TATA 0 0 0 0 9 9
## 3 TOYOTA 1298 149 1447 0 34 34
## 4 VOLKSWAGEN 0 2792 2792 0 1736 1736
## 5 VOLVO 0 187 187 0 0 0
## 6 TOPLAM: 7375 15983 23358 4815 4540 9355
## # ... with 5 more variables: total_dom <dbl>, total_imp <dbl>,
## # total_total <dbl>, year <dbl>, month <dbl>
colnames(raw_data) <- c("brand_name","auto_dom","auto_imp","auto_total","comm_dom","comm_imp","comm_total","total_dom","total_imp","total_total","year","month")
car_data <- raw_data %>% mutate_if(is.numeric,funs(ifelse(is.na(.),0,.)))
car_data <- car_data %>%
filter(!(year==2017 & month==2 & total_dom==0 & total_imp==0 & total_total==0) ) %>%
filter(brand_name != "TOPLAM:")
car_data <- car_data %>% mutate(day=1)
car_data <- car_data %>% mutate(date=paste(year, month, day, sep="-")) %>% mutate(date= ymd(date))