Assignment 3: ODD Retail Sales Jun 2017

#Create a temporary file
tmp=tempfile(fileext=".xlsx")
#Download file from repository to the temp file
download.file("https://github.com/MEF-BDA503/pj18-istema/blob/master/files/odd_retail_sales_2017_06.xlsx?raw=true",
                destfile=tmp,mode='wb')
#Read that excel file using readxl package's read_excel function. You might need to adjust the parameters (skip, col_names) according to your raw file's format.
raw_data<-readxl::read_excel(tmp,skip=7,col_names=FALSE)
# Remove the temp file
file.remove(tmp)
## [1] TRUE
# Remove the last two rows because they are irrelevant (total and empty rows)
raw_data <- raw_data %>% slice(-c(46,47))

# Let's see our raw data
head(raw_data)
## # A tibble: 6 x 10
##   X__1          X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10
##   <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ALFA ROMEO      NA    24    24    NA    NA     0     0    24    24
## 2 ASTON MARTIN    NA     2     2    NA    NA     0     0     2     2
## 3 AUDI            NA  2177  2177    NA    NA     0     0  2177  2177
## 4 BENTLEY         NA     1     1    NA    NA     0     0     1     1
## 5 BMW             NA  1409  1409    NA    NA     0     0  1409  1409
## 6 CHERY           NA    NA     0    NA    NA     0     0     0     0
# Change the column names in the data.
colnames(raw_data) <- c("brand_name","auto_dom","auto_imp","auto_total","comm_dom","comm_imp","comm_total","total_dom","total_imp","total_total")

# Replace NA values with 0 and label the time period with year and month. 
car_data_jun_17 <- raw_data %>% mutate_if(is.numeric,funs(ifelse(is.na(.),0,.))) %>% mutate(year=2017,month=6)

print(car_data_jun_17,width=Inf)
## # A tibble: 45 x 12
##    brand_name   auto_dom auto_imp auto_total comm_dom comm_imp comm_total
##    <chr>           <dbl>    <dbl>      <dbl>    <dbl>    <dbl>      <dbl>
##  1 ALFA ROMEO          0       24         24        0        0          0
##  2 ASTON MARTIN        0        2          2        0        0          0
##  3 AUDI                0     2177       2177        0        0          0
##  4 BENTLEY             0        1          1        0        0          0
##  5 BMW                 0     1409       1409        0        0          0
##  6 CHERY               0        0          0        0        0          0
##  7 CITROEN             0     1473       1473        1     1176       1177
##  8 DACIA               0     2933       2933        0      650        650
##  9 DS                  0        1          1        0        0          0
## 10 FERRARI             0        1          1        0        0          0
##    total_dom total_imp total_total  year month
##        <dbl>     <dbl>       <dbl> <dbl> <dbl>
##  1         0        24          24  2017     6
##  2         0         2           2  2017     6
##  3         0      2177        2177  2017     6
##  4         0         1           1  2017     6
##  5         0      1409        1409  2017     6
##  6         0         0           0  2017     6
##  7         1      2649        2650  2017     6
##  8         0      3583        3583  2017     6
##  9         0         1           1  2017     6
## 10         0         1           1  2017     6
## # ... with 35 more rows
saveRDS(car_data_jun_17,file="C:/Users/win7pro/Documents/GitHub/pj18-istema/files/odd_car_sales_data_jun_17.rds")

i.list of domestic sales for auto & commercial vehicles

#list of domestic sales for auto & commercial vehicles 
car_data_jun_17 %>% 
  filter(auto_dom > 0 | comm_dom > 0) %>%
  select(brand_name,total_dom) %>%
  arrange(desc(total_dom))
## # A tibble: 10 x 2
##    brand_name total_dom
##    <chr>          <dbl>
##  1 FIAT           10165
##  2 RENAULT         7905
##  3 FORD            5535
##  4 TOYOTA          3331
##  5 HYUNDAI         2209
##  6 HONDA           1581
##  7 ISUZU            141
##  8 KARSAN           119
##  9 MITSUBISHI        15
## 10 CITROEN            1

ii.list of import sales for brands auto & commercial vehicles based on the majority of commercial or auto sales.

car_data_jun_17 %>% 
  filter(auto_imp > 0 & comm_imp > 0) %>%
  select(brand_name,auto_imp,comm_imp,total_imp) %>%
  transmute(brand_name,total_imp,
  auto_comm = ifelse(auto_imp > comm_imp,"auto","comm")) %>%
  arrange(desc(total_imp))
## # A tibble: 14 x 3
##    brand_name    total_imp auto_comm
##    <chr>             <dbl> <chr>    
##  1 VOLKSWAGEN         9431 auto     
##  2 RENAULT            4328 auto     
##  3 FORD               3645 auto     
##  4 DACIA              3583 auto     
##  5 PEUGEOT            3525 auto     
##  6 MERCEDES-BENZ      3080 auto     
##  7 CITROEN            2649 auto     
##  8 NISSAN             2581 auto     
##  9 HYUNDAI            2422 auto     
## 10 KIA                1153 auto     
## 11 TOYOTA              918 auto     
## 12 FIAT                525 comm     
## 13 MITSUBISHI          185 comm     
## 14 SSANGYONG           117 auto