Busra Koc 25/11/2018
library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.0.0 ✔ purrr 0.2.5
## ✔ tibble 1.4.2 ✔ dplyr 0.7.6
## ✔ tidyr 0.8.1 ✔ stringr 1.3.1
## ✔ readr 1.1.1 ✔ forcats 0.3.0
## ── Conflicts ──────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(dplyr)
library(ggplot2)
library(formattable)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
odd_url <- ("https://github.com/MEF-BDA503/pj18-busraakoc/blob/master/car_data_aggregate.rds?raw=true")
odd_all_data <- readRDS(url(odd_url))
head(odd_all_data)
## # A tibble: 6 x 12
## brand_name auto_dom auto_imp auto_total comm_dom comm_imp comm_total
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 ALFA ROMEO 0 13 13 0 0 0
## 2 ASTON MAR… 0 2 2 0 0 0
## 3 AUDI 0 350 350 0 0 0
## 4 BENTLEY 0 0 0 0 0 0
## 5 BMW 0 158 158 0 0 0
## 6 CITROEN 0 134 134 0 197 197
## # ... with 5 more variables: total_dom <dbl>, total_imp <dbl>,
## # total_total <dbl>, year <dbl>, month <dbl>
tail(odd_all_data)
## # A tibble: 6 x 12
## brand_name auto_dom auto_imp auto_total comm_dom comm_imp comm_total
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 SSANGYONG 0 19 19 0 3 3
## 2 TATA 0 0 0 0 9 9
## 3 TOYOTA 1298 149 1447 0 34 34
## 4 VOLKSWAGEN 0 2792 2792 0 1736 1736
## 5 VOLVO 0 187 187 0 0 0
## 6 TOPLAM: 7375 15983 23358 4815 4540 9355
## # ... with 5 more variables: total_dom <dbl>, total_imp <dbl>,
## # total_total <dbl>, year <dbl>, month <dbl>
odd_all_data <- odd_all_data %>% filter(!grepl("ODD", brand_name)) %>% filter(!grepl("TOPLAM:", brand_name))
odd_all_data <- odd_all_data %>%
mutate(brand_name=replace(brand_name,brand_name=="ASTON MARTÄ°N","ASTON MARTIN"))
sales_total <- odd_all_data %>%
group_by(brand_name) %>%
summarise(total_total = sum(total_total)) %>%
arrange(desc(total_total))
head(sales_total)
## # A tibble: 6 x 2
## brand_name total_total
## <chr> <dbl>
## 1 RENAULT 318500
## 2 FIAT 275900
## 3 FORD 271157
## 4 VOLKSWAGEN 262041
## 5 HYUNDAI 131666
## 6 DACIA 117978
Analaysis for Renault
renault_data <- odd_all_data %>%
select(brand_name,auto_total,auto_dom,comm_dom,total_imp,total_dom,total_total,year,month) %>% filter(brand_name == 'RENAULT') %>% arrange(desc(total_total))
str(renault_data)
## Classes 'tbl_df', 'tbl' and 'data.frame': 33 obs. of 9 variables:
## $ brand_name : chr "RENAULT" "RENAULT" "RENAULT" "RENAULT" ...
## $ auto_total : num 18490 16240 11975 10831 11275 ...
## $ auto_dom : num 11492 11420 7692 6905 7292 ...
## $ comm_dom : num 0 0 0 0 0 0 0 0 0 0 ...
## $ total_imp : num 9586 7634 6292 5855 5449 ...
## $ total_dom : num 11492 11420 7692 6905 7292 ...
## $ total_total: num 21078 19054 13984 12760 12741 ...
## $ year : num 2016 2017 2017 2016 2016 ...
## $ month : num 12 12 11 11 5 6 4 6 7 10 ...
Graphs
ggplot(odd_all_data,aes(x=brand_name, y=mean(auto_total) ))