R Markdown

# Create a temporary file
tmp<-tempfile(fileext=".xlsx")
# Download file from repository to the temp file
download.file("https://github.com/MEF-BDA503/pj18-elmasriomer/blob/master/egm_example_data.xlsx?raw=true",destfile=tmp)
# Read that excel file using readxl package's read_excel function. You might need to adjust the parameters (skip, col_names) according to your raw file's format.
raw_data<-readxl::read_excel(tmp,skip=0,col_names=TRUE)
# Remove the temp file
file.remove(tmp)
## [1] TRUE
head(raw_data)
## # A tibble: 6 x 15
##   date  pension_fund_co… n_of_participan… fund_size_parti… gov_contribution
##   <chr> <chr>                       <dbl>            <dbl>            <dbl>
## 1 06.0… Aegon Emeklilik…            42826        139193651         14409322
## 2 06.0… Allianz Hayat v…           118867       1840701596        231156574
## 3 06.0… Allianz Yaşam v…           726684       7387398235        815356276
## 4 06.0… Anadolu Hayat E…          1119572       9975066501       1484745501
## 5 06.0… Asya Emeklilik …           129389        337754079         77689275
## 6 06.0… Avivasa Emeklil…           876894      10550032358       1355045933
## # ... with 10 more variables: contribution <dbl>, n_of_pensioners <chr>,
## #   n_of_ind_contracts <dbl>, n_of_group_ind_contracts <chr>,
## #   n_of_employer_group_certificates <chr>, n_total <dbl>,
## #   size_of_ind_contracts <dbl>, size_of_group_ind_contracts <dbl>,
## #   size_of_employer_group_certificates <dbl>, size_total <dbl>
tail(raw_data)
## # A tibble: 6 x 15
##   date  pension_fund_co… n_of_participan… fund_size_parti… gov_contribution
##   <chr> <chr>                       <dbl>            <dbl>            <dbl>
## 1 30.0… Halk Hayat ve E…           511848       2845016752        527923905
## 2 30.0… Katılım Emeklil…           205994        907989162        182110867
## 3 30.0… Metlife Emeklil…           187483       1368676067        233517732
## 4 30.0… NN Hayat ve Eme…           265725       2607702561        382046370
## 5 30.0… Vakıf Emeklilik…           502994       5375415236        757466988
## 6 30.0… Ziraat Hayat ve…           598703       3105479818        590220958
## # ... with 10 more variables: contribution <dbl>, n_of_pensioners <chr>,
## #   n_of_ind_contracts <dbl>, n_of_group_ind_contracts <chr>,
## #   n_of_employer_group_certificates <chr>, n_total <dbl>,
## #   size_of_ind_contracts <dbl>, size_of_group_ind_contracts <dbl>,
## #   size_of_employer_group_certificates <dbl>, size_total <dbl>
k = raw_data[raw_data$pension_fund_company == 'Aegon Emeklilik ve Hayat' ,c(1,2,3)] %>% arrange(desc(n_of_participants)) 
print(k)
## # A tibble: 76 x 3
##    date       pension_fund_company     n_of_participants
##    <chr>      <chr>                                <dbl>
##  1 06.01.2017 Aegon Emeklilik ve Hayat             42826
##  2 13.01.2017 Aegon Emeklilik ve Hayat             42790
##  3 31.01.2017 Aegon Emeklilik ve Hayat             42737
##  4 20.01.2017 Aegon Emeklilik ve Hayat             42733
##  5 03.02.2017 Aegon Emeklilik ve Hayat             42722
##  6 27.01.2017 Aegon Emeklilik ve Hayat             42686
##  7 10.02.2017 Aegon Emeklilik ve Hayat             42619
##  8 17.02.2017 Aegon Emeklilik ve Hayat             42559
##  9 28.02.2017 Aegon Emeklilik ve Hayat             42506
## 10 24.02.2017 Aegon Emeklilik ve Hayat             42483
## # ... with 66 more rows
#head(k)

#ggplot(data = k, aes(x = 1:nrow(k), y = n_of_participants)) + geom_line()

#ggplot(data = raw_data, aes(x = n_of_participants, y = fund_size_participants)) + 
 #   geom_point()
raw_data %>% group_by(pension_fund_company) %>% summarise(max_n_of_participants = max(n_of_participants))
## # A tibble: 20 x 2
##    pension_fund_company            max_n_of_participants
##    <chr>                                           <dbl>
##  1 Aegon Emeklilik ve Hayat                        42826
##  2 Allianz Hayat ve Emeklilik                     118867
##  3 Allianz YaÅŸam ve Emeklilik                     780983
##  4 Anadolu Hayat Emeklilik                       1152670
##  5 Asya Emeklilik ve Hayat                        129389
##  6 Avivasa Emeklilik ve Hayat                     886986
##  7 Axa Hayat ve Emeklilik                          35893
##  8 Bereket Emeklilik ve Hayat                     124327
##  9 BNP Paribas Cardif Emeklilik                   187408
## 10 Cigna Finans Emeklilik ve Hayat                122997
## 11 Fiba Emeklilik ve Hayat                         96807
## 12 Garanti Emeklilik ve Hayat                    1211803
## 13 Groupama Emeklilik                                 NA
## 14 Halk Hayat ve Emeklilik                        511848
## 15 Katılım Emeklilik ve Hayat                     205994
## 16 Metlife Emeklilik ve Hayat                     188893
## 17 NN Hayat ve Emeklilik                          268929
## 18 Vakıf Emeklilik                                474386
## 19 Vakıf Emeklilik ve Hayat                       503330
## 20 Ziraat Hayat ve Emeklilik                      598703
raw_data %>% rowwise() %>% mutate(date = lubridate::as_date(dmy(date))) %>% ungroup() %>% ggplot(data = ., aes(x = date, 
    y = n_of_participants, color = pension_fund_company)) + geom_line()
## Warning: Removed 1 rows containing missing values (geom_path).

#%>% ggplot(data = k, aes(x = date, y = n_of_participants)) + geom_line()
raw_data %>% rowwise() %>% mutate(date = lubridate::as_date(dmy(date))) %>% ungroup() %>% ggplot(data = ., aes(x = date, 
    y = size_total, color = pension_fund_company)) + geom_line()
## Warning: Removed 1 rows containing missing values (geom_path).