The dataset used in this analysis is the university entrance examinations (YGS/LYS) data from 2017. Dataset has 11031 observations and 14 variables.
osym_summary<-osym%>%filter(grepl("STANBUL",city))%>%
group_by(city,university_name,exam_type)%>%
summarise(max_puan=round(max(max_score),2),
min_puan=round(min(min_score),2),
diff=round(max_puan-min_puan,2),
avg_max=round(mean(max_score),2),
avg_min=round(mean(min_score),2),
median_max=round(median(max_score),2),
median_min=round(median(max_score),2),
IQR1_max=round(IQR(max_score,1),2),
IQR1_min=round(IQR(min_score,1),2),
IQR3_max=round(IQR(max_score,3),2),
IQR3_min=round(IQR(min_score,3),2)
)
# Find te ordered list according to median of Min Score due to Exam Type
plot_median<-osym_summary %>%
select(exam_type,median_min)%>%
arrange(exam_type,desc(median_min)) %>%
ungroup %>%
group_by(exam_type) %>%
mutate(order_of_mef=row_number()) %>%
filter(grepl("MEF ",university_name))
plot_median
## # A tibble: 5 x 5
## # Groups: exam_type [5]
## city university_name exam_type median_min order_of_mef
## <chr> <chr> <chr> <dbl> <int>
## 1 ISTANBUL MEF ÜNIVERSITESI DIL_1 446.08 9
## 2 ISTANBUL MEF ÜNIVERSITESI MF_1 372.36 11
## 3 ISTANBUL MEF ÜNIVERSITESI MF_4 404.68 10
## 4 ISTANBUL MEF ÜNIVERSITESI TM_1 377.29 10
## 5 ISTANBUL MEF ÜNIVERSITESI TM_3 404.92 12
# Find te ordered list according to Average of Min Score due to Exam Type
plot_mean<-osym_summary %>%
select(exam_type,avg_min)%>%
arrange(exam_type,desc(avg_min)) %>%
ungroup %>%
group_by(exam_type) %>%
mutate(order_of_mef=row_number()) %>%
filter(grepl("MEF ",university_name))
plot_mean
## # A tibble: 5 x 5
## # Groups: exam_type [5]
## city university_name exam_type avg_min order_of_mef
## <chr> <chr> <chr> <dbl> <int>
## 1 ISTANBUL MEF ÜNIVERSITESI DIL_1 391.42 7
## 2 ISTANBUL MEF ÜNIVERSITESI MF_1 328.73 9
## 3 ISTANBUL MEF ÜNIVERSITESI MF_4 342.15 12
## 4 ISTANBUL MEF ÜNIVERSITESI TM_1 284.48 18
## 5 ISTANBUL MEF ÜNIVERSITESI TM_3 362.69 10
g_median <- ggplot(plot_median,aes(x=exam_type,y=order_of_mef,size=median_min))+
geom_point(stat="identity",color="purple") + scale_y_continuous(limits = c(0,20)) + ylab("Order of MEF") + xlab("Exam Type") +
ggtitle("According to Median of Min Score") +
theme_minimal()
g_mean <- ggplot(plot_mean,aes(x=exam_type,y=order_of_mef,size=avg_min))+
geom_point(stat="identity",color="darkred") + scale_y_continuous(limits = c(0,20)) + ylab("Order of MEF") + xlab("Exam Type") +
ggtitle("According to Mean of Min Score ") +
theme_minimal()
grid.arrange(g_median,g_mean,ncol=1)
osym_data_2017<-osym
ist.uni<-osym_data_2017 %>% filter(grepl("STANBUL",city))
mef.uni<-ist.uni %>% filter(grepl("MEF",university_name))
mef.uni.top_10 <- mef.uni %>% group_by(program_name) %>% summarise(max_max_score=max(max_score)) %>% top_n(10)
ggplot(mef.uni.top_10,aes(x=program_name,y=max_max_score)) + geom_bar(stat="identity",fill="tomato",width = 0.9) +scale_y_continuous(limits = c(0,500))+
theme_minimal() + coord_flip() +theme(axis.text = element_text(angle = 15)) + xlab("Programmes") + ylab("Max Score") + ggtitle("MEF UNIVERSITY TOP 10 PROGRAM")
According to graph; it can be observed programmes with OSYM scholarship is the most popular programmes, especially if it is full scholarship. So; MEF University can expand scholarship quota of top 10 programmes to gain more student and take advantage on undergraduate market.
Another valuable point from graph is that “Hukuk (Tam Burslu)” program of MEF University has the max score on exam. We should glance at other universities which has “Hukuk (Tam Burslu)” program to check which of them are MEF University’s competitors on this program in the undergraduate market.
ist.uni.hukuk <- ist.uni %>% filter(program_name=="Hukuk (Tam Burslu)")
orderedhukuk<-ist.uni.hukuk%>%arrange(desc(max_score))
orderedhukuk%>%select(university_name,max_score)
## # A tibble: 21 x 2
## university_name max_score
## <chr> <dbl>
## 1 KOÇ ÜNIVERSITESI 558.3680
## 2 ÖZYEGIN ÜNIVERSITESI 522.6578
## 3 YEDITEPE ÜNIVERSITESI 521.7373
## 4 BAHÇESEHIR ÜNIVERSITESI 519.3311
## 5 ISTANBUL SEHIR ÜNIVERSITESI 509.7540
## 6 ISTANBUL BILGI ÜNIVERSITESI 495.1883
## 7 ISTANBUL KÜLTÜR ÜNIVERSITESI 485.4321
## 8 ISTANBUL SABAHATTIN ZAIM ÜNIVERSITESI 478.2252
## 9 IBN HALDUN ÜNIVERSITESI 474.7438
## 10 FATIH SULTAN MEHMET VAKIF ÜNIVERSITESI 462.3083
## # ... with 11 more rows
#Graph is better.
set.seed(2)
ggplot(orderedhukuk,aes(x=reorder(university_name,max_score),y=max_score,label=max_score)) + geom_bar(stat="identity",fill="darkblue",width = 0.6) + coord_flip() + theme_minimal() + scale_y_continuous(limits = c(0,600)) + xlab("University") + ylab("Max Score") + ggtitle("Hukuk (Tam Burslu) Program In Universities")