In this case study our group are going to explore university entrance examinations (YGS/LYS) data from 2017.
Dataset consists of undergraduate programs offered in 2017. Each program offers an availability (i.e. quota). Then students get placed according to their lists and their scores. Each program is filled with the students ranked by their scores until placements are equal to availability. Student placed to a a program with the highest score forms the maximum score of that program and the last student to be placed forms the minimum score.
MEF University management asks us to examine the data and provide insights that are useful to understand MEF University’s place among its competitors and in the undergraduate market. We decided to examine occupancy rate of quota which is found dividing the general placement into general quota. After assessment the university with analysis, we wil have an outcome and wil offer a suggestion to university management.
dim(osym_data_2017)
## [1] 11031 14
#Filtered abroad university
osym_data_2017_except_abroad <- osym_data_2017 %>%
filter(program_id<300000000)
dim(osym_data_2017_except_abroad)
## [1] 9812 14
Occupancy_rate_of_quota <- osym_data_2017_except_abroad %>%
group_by(university_name) %>%
summarise(total_quota = sum(general_quota),
total_placement = sum(general_placement),
Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>%
arrange(Percentage)
Occupancy_rate_of_quota
## # A tibble: 172 x 4
## university_name total_quota total_placement Percentage
## <chr> <dbl> <dbl> <dbl>
## 1 ANADOLU ÜNIVERSITESI 55767 12864 23
## 2 ISTANBUL RUMELI ÜNIVERSITESI 528 197 37
## 3 ALANYA HAMDULLAH EMIN PASA ÜNIVERSITESI 155 60 39
## 4 ALTINBAS ÜNIVERSITESI 1749 770 44
## 5 ISTINYE ÜNIVERSITESI 953 429 45
## 6 TÜRK HAVA KURUMU ÜNIVERSITESI 596 270 45
## 7 ANTALYA AKEV ÜNIVERSITESI 230 125 54
## 8 TOROS ÜNIVERSITESI 510 289 57
## 9 AVRASYA ÜNIVERSITESI 1366 796 58
## 10 ARDAHAN ÜNIVERSITESI 1130 664 59
## # ... with 162 more rows
Istanbul_Occupancy_rate_of_quota <- osym_data_2017_except_abroad %>%
filter(city == "İSTANBUL")%>%
group_by(university_name) %>%
summarise(total_quota = sum(general_quota),
total_placement = sum(general_placement),
Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>%
arrange(Percentage)
Istanbul_Occupancy_rate_of_quota
## # A tibble: 51 x 4
## university_name total_quota total_placement Percentage
## <chr> <dbl> <dbl> <dbl>
## 1 ISTANBUL RUMELI ÜNIVERSITESI 528 197 37
## 2 ALTINBAS ÜNIVERSITESI 1749 770 44
## 3 ISTINYE ÜNIVERSITESI 953 429 45
## 4 ISTANBUL GELISIM ÜNIVERSITESI 3950 2351 60
## 5 ISTANBUL GEDIK ÜNIVERSITESI 690 421 61
## 6 ISTANBUL KENT ÜNIVERSITESI 440 269 61
## 7 HALIÇ ÜNIVERSITESI 1403 886 63
## 8 ISTANBUL AREL ÜNIVERSITESI 1545 980 63
## 9 OKAN ÜNIVERSITESI 2393 1555 65
## 10 BIRUNI ÜNIVERSITESI 1077 759 70
## # ... with 41 more rows
ggplot(Istanbul_Occupancy_rate_of_quota, aes(x=reorder(university_name,Percentage), y=Percentage)) +
geom_bar(stat = "identity", aes(fill=Istanbul_Occupancy_rate_of_quota$university_name=='MEF ÜNİVERSİTESİ')) +
labs(title="Occupancy Rate of Quota Universities in Istanbul",x="University",y="Quota Occupancy Rate",fill="") +
theme (axis.text.x=element_text (angle=-90,vjust=0.5, hjust=0)) +
scale_fill_manual(values = c('#f39c12', '#e67e22'),guide=FALSE)
MEF_Occupancy_rate_of_quota <- osym_data_2017_except_abroad %>%
filter(university_name == "MEF ÜNİVERSİTESİ")%>%
group_by(faculty_name) %>%
summarise(total_quota = sum(general_quota),
total_placement = sum(general_placement),
Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>%
arrange(Percentage)
MEF_Occupancy_rate_of_quota
## # A tibble: 6 x 4
## faculty_name total_quota total_placement Percentage
## <chr> <dbl> <dbl> <dbl>
## 1 Egitim Fakültesi 130 95 73
## 2 Iktisadi, Idari ve Sosyal Bilimler Fakültesi 190 176 93
## 3 Hukuk Fakültesi 153 153 100
## 4 Hukuk Fakültesi (Tam Burslu) 17 17 100
## 5 Mühendislik Fakültesi 212 212 100
## 6 Sanat, Tasarim ve Mimarlik Fakültesi 115 115 100
ggplot(MEF_Occupancy_rate_of_quota, aes(x=reorder(faculty_name,Percentage),y=Percentage)) +
geom_bar(stat = "identity",colour="black", fill="#e67e22", width=.5,) +
labs(title="Quota Occupancy Rate of Each Faculty of MEF University",x="Faculty",y="Percentage",fill="") +
theme (axis.text.x=element_text(angle=0,vjust=1, hjust=1)) +
coord_flip()
All_universities_mean<-round(mean(Occupancy_rate_of_quota$Percentage))
İstanbul_universities_mean<-round(mean(Istanbul_Occupancy_rate_of_quota$Percentage))
MEF_Rate<- Istanbul_Occupancy_rate_of_quota %>%
select(university_name, Percentage) %>%
filter(university_name == "MEF ÜNİVERSİTESİ")
Percentages=data.frame(name=c("All_Universities", "Istanbul","MEF") , value=c(All_universities_mean,İstanbul_universities_mean,MEF_Rate$Percentage))
ggplot(Percentages, aes(x=reorder(name,value), y=value)) +
geom_bar(stat = "identity",colour="black", fill="#e67e22", width=.5,)+
labs(title="Comparing Quota Occupancy Rate",x="Percentage",y="Quota Occupancy Rate",fill="") +
theme (axis.text.x=element_text(angle=0,vjust=2, hjust=2)) +
coord_flip()
MEF_Program_Rate <- osym_data_2017_except_abroad %>%
filter(university_name == "MEF ÜNİVERSİTESİ")%>%
group_by(program_name) %>%
summarise(total_quota = sum(general_quota),
total_placement = sum(general_placement),
Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>%
filter(Percentage < 100)
MEF_Program_Rate
## # A tibble: 3 x 4
## program_name total_quota total_placement Percentage
## <chr> <dbl> <dbl> <dbl>
## 1 Ekonomi (Ingilizce) (%50 Burslu) 22 10 45
## 2 Isletme (Ingilizce) (%50 Burslu) 22 20 91
## 3 Rehberlik ve Psikolojik Danismanlik (Ingilizce) (%50 Burslu) 60 25 42
According to the universites’ occupancy rates of quota, MEF University has 3 program which is not full quota. On the other hand, occupancy rates of quota is higher than universities in Turkey /İstanbul. We suggest an offer to MEF University Management to decrease the quota of 3 non-full programs.