Introduction

In this case study our group are going to explore university entrance examinations (YGS/LYS) data from 2017.

Dataset consists of undergraduate programs offered in 2017. Each program offers an availability (i.e. quota). Then students get placed according to their lists and their scores. Each program is filled with the students ranked by their scores until placements are equal to availability. Student placed to a a program with the highest score forms the maximum score of that program and the last student to be placed forms the minimum score.

MEF University management asks us to examine the data and provide insights that are useful to understand MEF University’s place among its competitors and in the undergraduate market. We decided to examine occupancy rate of quota which is found dividing the general placement into general quota. After assessment the university with analysis, we wil have an outcome and wil offer a suggestion to university management.


Clean Data and Assign New Population

  • First we had a quick review of number of rows and columns “osym_data_2017” dataset.
dim(osym_data_2017)
## [1] 11031    14
  • We filtered abroad universities that university management is not interested. (IDs that start with 3 or 4)
#Filtered abroad university 
osym_data_2017_except_abroad <- osym_data_2017 %>% 
  filter(program_id<300000000)
  • Let’s see number of our new population excluding the abroad universities.
dim(osym_data_2017_except_abroad)
## [1] 9812   14

Analysis

Occupancy_rate_of_quota <- osym_data_2017_except_abroad  %>% 
  group_by(university_name) %>% 
  summarise(total_quota = sum(general_quota),
            total_placement = sum(general_placement),
            Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>% 
  arrange(Percentage)

Occupancy_rate_of_quota
## # A tibble: 172 x 4
##                            university_name total_quota total_placement Percentage
##                                      <chr>       <dbl>           <dbl>      <dbl>
##  1                    ANADOLU ÜNIVERSITESI       55767           12864         23
##  2            ISTANBUL RUMELI ÜNIVERSITESI         528             197         37
##  3 ALANYA HAMDULLAH EMIN PASA ÜNIVERSITESI         155              60         39
##  4                   ALTINBAS ÜNIVERSITESI        1749             770         44
##  5                    ISTINYE ÜNIVERSITESI         953             429         45
##  6           TÜRK HAVA KURUMU ÜNIVERSITESI         596             270         45
##  7               ANTALYA AKEV ÜNIVERSITESI         230             125         54
##  8                      TOROS ÜNIVERSITESI         510             289         57
##  9                    AVRASYA ÜNIVERSITESI        1366             796         58
## 10                    ARDAHAN ÜNIVERSITESI        1130             664         59
## # ... with 162 more rows
Istanbul_Occupancy_rate_of_quota <- osym_data_2017_except_abroad  %>% 
  filter(city == "İSTANBUL")%>% 
  group_by(university_name) %>% 
  summarise(total_quota = sum(general_quota),
            total_placement = sum(general_placement),
            Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>% 
  arrange(Percentage)

Istanbul_Occupancy_rate_of_quota
## # A tibble: 51 x 4
##                  university_name total_quota total_placement Percentage
##                            <chr>       <dbl>           <dbl>      <dbl>
##  1  ISTANBUL RUMELI ÜNIVERSITESI         528             197         37
##  2         ALTINBAS ÜNIVERSITESI        1749             770         44
##  3          ISTINYE ÜNIVERSITESI         953             429         45
##  4 ISTANBUL GELISIM ÜNIVERSITESI        3950            2351         60
##  5   ISTANBUL GEDIK ÜNIVERSITESI         690             421         61
##  6    ISTANBUL KENT ÜNIVERSITESI         440             269         61
##  7            HALIÇ ÜNIVERSITESI        1403             886         63
##  8    ISTANBUL AREL ÜNIVERSITESI        1545             980         63
##  9             OKAN ÜNIVERSITESI        2393            1555         65
## 10           BIRUNI ÜNIVERSITESI        1077             759         70
## # ... with 41 more rows
ggplot(Istanbul_Occupancy_rate_of_quota, aes(x=reorder(university_name,Percentage), y=Percentage)) +
  geom_bar(stat = "identity", aes(fill=Istanbul_Occupancy_rate_of_quota$university_name=='MEF ÜNİVERSİTESİ')) +
  labs(title="Occupancy Rate of Quota Universities in Istanbul",x="University",y="Quota Occupancy Rate",fill="") +
  theme (axis.text.x=element_text (angle=-90,vjust=0.5, hjust=0)) +
  scale_fill_manual(values = c('#f39c12', '#e67e22'),guide=FALSE)

MEF_Occupancy_rate_of_quota <- osym_data_2017_except_abroad  %>% 
  filter(university_name == "MEF ÜNİVERSİTESİ")%>% 
  group_by(faculty_name) %>% 
  summarise(total_quota = sum(general_quota), 
            total_placement = sum(general_placement),
            Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>% 
  arrange(Percentage)

MEF_Occupancy_rate_of_quota
## # A tibble: 6 x 4
##                                   faculty_name total_quota total_placement Percentage
##                                          <chr>       <dbl>           <dbl>      <dbl>
## 1                             Egitim Fakültesi         130              95         73
## 2 Iktisadi, Idari ve Sosyal Bilimler Fakültesi         190             176         93
## 3                              Hukuk Fakültesi         153             153        100
## 4                 Hukuk Fakültesi (Tam Burslu)          17              17        100
## 5                        Mühendislik Fakültesi         212             212        100
## 6         Sanat, Tasarim ve Mimarlik Fakültesi         115             115        100
ggplot(MEF_Occupancy_rate_of_quota, aes(x=reorder(faculty_name,Percentage),y=Percentage)) +
  geom_bar(stat = "identity",colour="black", fill="#e67e22", width=.5,) +
  labs(title="Quota Occupancy Rate of Each Faculty of MEF University",x="Faculty",y="Percentage",fill="") +
  theme (axis.text.x=element_text(angle=0,vjust=1, hjust=1)) +
  coord_flip()

All_universities_mean<-round(mean(Occupancy_rate_of_quota$Percentage))
İstanbul_universities_mean<-round(mean(Istanbul_Occupancy_rate_of_quota$Percentage))

MEF_Rate<- Istanbul_Occupancy_rate_of_quota  %>% 
  select(university_name, Percentage) %>%
  filter(university_name == "MEF ÜNİVERSİTESİ")
Percentages=data.frame(name=c("All_Universities", "Istanbul","MEF") ,  value=c(All_universities_mean,İstanbul_universities_mean,MEF_Rate$Percentage))

ggplot(Percentages, aes(x=reorder(name,value), y=value)) + 
  geom_bar(stat = "identity",colour="black", fill="#e67e22", width=.5,)+
  labs(title="Comparing Quota Occupancy Rate",x="Percentage",y="Quota Occupancy Rate",fill="") +
  theme (axis.text.x=element_text(angle=0,vjust=2, hjust=2)) +
  coord_flip()

MEF_Program_Rate <- osym_data_2017_except_abroad  %>% 
  filter(university_name == "MEF ÜNİVERSİTESİ")%>% 
  group_by(program_name) %>% 
  summarise(total_quota = sum(general_quota), 
            total_placement = sum(general_placement),
            Percentage=round((sum(general_placement)/sum(general_quota))*100)) %>% 
  filter(Percentage < 100) 

MEF_Program_Rate
## # A tibble: 3 x 4
##                                                   program_name total_quota total_placement Percentage
##                                                          <chr>       <dbl>           <dbl>      <dbl>
## 1                             Ekonomi (Ingilizce) (%50 Burslu)          22              10         45
## 2                             Isletme (Ingilizce) (%50 Burslu)          22              20         91
## 3 Rehberlik ve Psikolojik Danismanlik (Ingilizce) (%50 Burslu)          60              25         42

Conclusion

According to the universites’ occupancy rates of quota, MEF University has 3 program which is not full quota. On the other hand, occupancy rates of quota is higher than universities in Turkey /İstanbul. We suggest an offer to MEF University Management to decrease the quota of 3 non-full programs.